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Traditionally, it is assumed that a deformable body yields under load at the moment when the stress-state or the stored 

energy parameters at the most critical points in the body reach the maximum allowable values and that the moment of failure 

is uniquely determined by the strength constants of the material. However, there is experimental evidence that-the rigidity of 
the loading system also affects the resistance to failure. Here the loading system includes both the loading device (the testing 

machine, the structural elements which transmit the load, the working fluid or gas, etc.) and area of the deformable body 

around the failure zone [1, 2]. 
If  the load is "soft," i.e., if the loading forces are independent of the resistance of a body in a homogeneous stress 

state, then failure really does correspond to the maximum stresses. In the other limiting case (a "rigid" load), the boundary 

points are displaced by a given amount, and damage can accumulate in an equilibrium process, which is reflected by a 
descending section in the stress- strain diagram [3-9]. If the loading system has finite rigidity, the moment that load-carrying 

capability is lost can correspond to one point or another on the descending part of the stress-strain diagram. The material state 
corresponding to the highest point on the stress-strain diagram is the critical point, but - to be more precise - failure is the 
final rapid non-equilibrium stage of this process, and can be viewed as the result of the loss of stability of accumulated damage 

at a supercritical strain stage. Also, the concept of a supercritical strain stage allows the reserves of load-carrying capacity to 

be used in optimizing structure design. 
A more precise calculation that uses the total strain diagram requires the formulation and solution of boundary-value 

problems that consider material yield [10-13], and also possible stability losses in the weakened zones [4, 13, 14]. Here we 

present new boundary conditions that consider the rigidity of the loading system, formulate the defining equations, introduce 

supercritical strain conditions, obtain stability criteria for damage accumulation at the supercritical strain stage for an elementary 
material particle, and give a formulation of boundary-value problems that considers these effects within the framework of the 
mechanics of deformable solids. 

1. Equation of State. For a material with microdamage, the stress tensor a is related to the strain tensor e in terms 

of a fourth-order damage-vulnerability tensor fl by a defining equation in the form [15] 

(1.1) 

where C is the elastic modulus tensor; the Iklra n = (1/2)(~/on~tn + ~ / m )  are the components of the unit tensor, and ~ is the 
Kronecker delta. 

In this model, all processes that change the material state are described by the damage-vulnerability tensor operator 
0, whose components are uniquely defined by the strain (loading) process. If the stresses can be defined by knowing the strains 
only at the current moment of time, then fl is a function. When experimental data are reduced, this function can also describe 
the descending section of the stress-strain diagram. 
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Fig. 1 

Like the elastic modulus tensor, fl has several independent components (their number and structure depend on the 

anisotropy of  the damage accumulation processes), which define the other nonzero components. For example, for an initially 

isotropic material that remains isotropic as damage accumulates, the components of the fl tensor are defined by two independent 

scalar quantities, and the equation of state has the form 

aij = [3K(1 - ~e)Y~j.~n + 2G(1 - g)Dij,~,,]e,,.~. 

The damage function ~e and g depend on two invariants of the strain tensor: 

jO)  = ~ k ,  j(2) = ~ ,  gij = eij - ( l l3 )ekkSi j .  

For an inelastic transverse-isotropic material, the defining equations that use the engineering elastic constants are written 

a s  

(1/2)(O'11 "4- 0*22) ---- k(1 - m)(~ll Jr E'22) Jr/(1 - ~)~33, 

( 1 / 2 ) ( o 1 1  - 0"22) = G i C t  - , , , . ) (Er ,  - ~ 2 ) ,  

0"~ = t(1 - ~o)(~11 + e22) + n(1 - ~)~33, 

O"12 = 2 G l ( 1  - P . I . ) 8 1 2 ,  0"13 = 2GIl(1 - Pll)el3. 

All the tensor components are def'med by five independent functions: m, ~o, ~, p .L, and p ]1. In the general case, the 
arguments of  these functions are the four invariants of the strain tensor [16]: 

j (1 )  = e l l  + e22,  j (2 )  = e33, 

j(3) = - ,22)  2 + . e ) =  Jr 4 .  

For an orthotropic material, Eqs. (1.1) have the form 

0.11 = CIl11(1 - )r163 Jr Cl122(1 - )~4)s Jr CllZ3(1 - )~6)e33, 

a22 = Cl122(1 - ;~4)ell + C2222(1 - ,X2)~22 + C2233(1 - ,Xs)~33, 

0"33 = Cl133(1 - A6)ell + (72233(1 - A5)~22 Jr C3333(1 - A3)e,~3, 

0"12 = 2Cm12(1 - Ar)~12, 0"23 = 2C2323(1 - )~8)~33, 

0"13 = 2C1313(I - A9)~13 

where the arguments of  the material functions h a are the six invariants of the strain tensor [16]. 
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TABLE 1. Methods of Loading Various Bodies and the Corresponding Boundary 

Conditions 

Body Calculational diagram Boundary conditions 

/////// 

i i~', i 

i 

T 
P=Po-~u 

F = cross-sectional area 

E = elastic modulus 

u = displacement of the end of the rod 

Negative loading rigidity 

R = - r r t w  2 

p = po --  2-~K u 

K = bulk compression modulus of the 
working fluid 

u = displacement of the inner wall of 

the cylinder 

P = Po + 2 R u  

R = rigidity of the plate 

u = displacement of the 

rivet due to crack growth 

I V ~  c uo - R . .  

R ~ c c o s ~  

2 sin 2 ct 

u = displacement of the bearing axis 

2 ~  2 

p = at 2 ..4. b2 _ v ( b 2  _ a z )  p a  - R U b ,  

E,~b 2 - r 
R = b [ ~  + b~ _ ~,(b ~ _ . ~ ) ]  

If  failure zones can arise in a body during deformation, the boundary problem can be formulated more easily if the 

defining equations are written in the form [17] 

a i r  = C i j k l ( / k t , ~ , ~  - -  ftkt,,,,~)(Z,,,,,pq -- P~, ,pq)epq 

and the stepwise change in the deformation properties of the material are considered explicitly by using an indicator tensor P. 
The components of this tensor change stepwise from zero to unity when corresponding strength or stability conditions are no 

longer fulftlled for a supercritical strain and reflect that the material has lost the ability to resist a given type of load. 
2. Boundary Conditions. We now formulate boundary conditions that consider the finite rigidity of the loading device. 

Let applied external forces on a section I'  s of the boundary of the body be specified as follows: 
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I = S ~  & = a i j n j .  (2.1) [Si(t) + Rijuj(t)] rs  

Here S~ is the external force vector which is specified by the loading program; u is the displacement vector for points on 

the boundary with a normal n; a is the stress tensor; t is time; and Ru(u) is the rigidity of the loading device. 
Here the boundary conditions explicitly include how the external loads change as the body deforms due to strain, a 

change usually neglected when the strains are small. However, just as small strains are studied in the mechanics of deformable 

solids because they can lead to large stresses, such small boundary displacements in a highly rigid loading machine deserve 
attention, because they can cause sharp changes in the external loads. This is especially true for boundary-value problems in 

which an energy balance is established during the formation of zones of damage accumulation, yielding, and failure. For 

example, engineering practice recognizes the substantial difference in the failure of hydraulic and pneumatic pressure vessels 

and piping. The way boundary-value problems are usually formulated, these cases are equivalent. The proposed boundary 
conditions augment the problem with information on the properties of the loading device and can describe the redistribution 
of energy between it and the deformable body. 

We write the kinematic boundary conditions as in (2.1). Let the displacements on the boundary F u be given as 

[ui(t) + QijSj(t)] r~ = u~ (2.2) 

where Qij(S) is the compliance of the loading device and u 0 is specified by the loading program. The specified forces and 

displacements are nominally related by the equations 

o QijSo, RikQkj ~ij, (2.3) S o = = = 

and Eqs. (2.1) and (2.2) are mutually invertible. 

If R~. = 0 or Q/j = 0, the boundary conditions correspond to "soft" or "rigid" loading conditions, respectively, and 
formally coincide with the boundary conditions that are used in the mechanics of a deformable solid. 

The interaction of the deformable body and the loading system is illustrated schematically in Fig. 1 (a is the general 

one-dimensional case, b is an absolutely "soft" loading, c is an absolutely "rigid" loading, 1 is the characteristic curve of the 
loading system, and 2 is the characteristic curve of the deformable body). 

Several different boundary conditions that consider the rigidity of the loading device are shown for various technical 

systems in Table 1. In particular we note that in several cases the loading rigidity can be negative and that the rigidity of the 
loading device can be increased by special techniques, by using a wedge or plates. 

The new formulation of the boundary conditions allow consideration of the difference between the real loading process 
or deformation and that nominally specified. An important characteristic of the loading method is its rate. We now show that 
the actual loading rate differs from the nominal, depending on the rigidity of the loading device. 

Assume that the boundary-value problem is solved and that the relationship between forces and displacements is known 
at any point on the boundary of the body: 
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Here the H/j and PU are the rigidities and compliances of the deformable system. From these equations it follows from 

Eqs. (2.1)-(2.3) that 

Si = (~ik Jl- l ~ i j e j k ) - l s ~ ,  ~i = (~ik "~- Q i jH jk )  -1UO. 

If  the properties of the loading and deformable systems do not depend on time, then the obvious equations relating the 
rates of change of the forces and the kinematic quantities remain valid (go = dSO/dt ,  Si  = d S i / d t ,  r = duO~dr, and i~ = 

du i / d t ) :  

The last equation are illustrated in Fig. 2 for the one-dimensional case. The higher the rigidity of the loading system, 

the closer the loading conditions are to u~ The higher the compliance of the loading system, the closer the loading conditions 

are to S~ 
Thus, if the loading rigidity is nonzero, then the loading rate differs from the nominal, but if the loading compliance 

is nonzero, the displacement rate of the boundary points differs from the nominal. 
3. Critical Strain Conditions. The traditional strength criteria, which are based on comparing the value of some 

function of stress or strain tensor components with its limiting value, usually do not include the rigidity of the loading system 
and correspond to zero rigidity. In this case, similar criteria can be used to estimate the critical stress state. We will 
characterize the limiting state of  the material by combining two conditions: supercritical strain and the destabilization of the 

process. We now examine the furst condition and consider the possibility of failure due to different mechanisms. 
A phenomenological estimate of the failure of a solid body based on a strength criterion generally says nothing about 

the nature of the processes that led to the loss of load-bearing capability, although some criteria can have a physical 

interpretation. By using a combination of criteria, we can differentiate between failure mechanisms within the framework of 

a phenomenological approach. 

Measures of  the damage-vulnerability tensor Mm(fl), which can be called measures of  damage and which are functions 
of  the components of fl, can be used to construct criteria for the supercritical strain stage of isotropic and anisotropic materials. 

Let the corresponding constants of the critical damage tim of a material be such that for any m a particle is intact if 

M,, ,(f l)  < ft~i, m = 1, 2 , . . .  <~ n 

(n is the number of independent components of the tensor fl), but can have a failure of type k if for some m = k 

Mk( I I ) />  f ~ .  (3.1) 
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If we want to consider even two different types of failure (from rupture and from shear, for example), we must examine at 

least two measures of damage. 
For inelastic hardmaterialsunder aone-time loading, critical strain criterion (3.1) is equivalent to one of the inequalities 

f m ( j ! x ) , . . . , j ( , " ) )  >. c , , , ,  m = <. (3.2) 

where the j(e n) are independent invariants of the strain tensor; the C m are material constants; and the fro are universal functions. 
Because the stress state, especially for composites, is nonhomogeneous, zones arise within the deformable body that 

to not satisfy the strength criteria. The question of whether or not failure of some microparticle leads to failure of the 
deformable body can be answered only after describing the stress redistribution process and possibly also the resultant damage 
of neighboring particles. Naturally this requires having data and making assumptions on the properties of a material particle 
which is damaged by some mechanism. Because of stress redistribution, it is possible that this particle can make a future 

contribution to resistance to an external load. 
4. Stability Condition of the Supercritical Strain of a Material Point. The stability of the supercrkical strain 

process, which is accompanied by an equilibrium growth of defects, can be analyzed by examining the relationship between 
energy outlays (the total growth of the elastic energy and the failure energy) and inputs (the work of external forces) for a 

hypothetically small growth in the supercritical strain. Within the framework of a phenomenological description, failure energy 
is taken as the energy dissipation related to the damage accumulation process. For an elementary material volume the failure 

energy and the increase in potential energy of elastic strain comprise the specific strain energy, which for any strain interval 
is the area under the equilibrium stress-strain curve. This curve is found experimentally by using a "rigid" test machine. 

On the descending section of the stress-strain diagram, the breakup energy is greater than the strain energy. The larger 
this difference, the faster the curve drops to the final strain stage. Besides the external energy input, breakup process is also 

maintained by freeing the potential elastic strain energy. 
Conceptually we remove from the body an elementary parallelepiped of volume dr/in the neighborhood of the point 

in question. If we apply stresses a '  on the boundaries of the resultant void (the prime denotes the difference from stresses in 

the usual sense), they cause a strain e. 
We now establish a relationship between these stresses and strains: 

The tensor V can be called the effective rigidity tensor of the loading system and characterizes the strain properties of both 

the entire body and the of a loading device that provides specified displacements or forces on the boundary. 

By using the effective rigidity tensor of the loading system, the work of external forces to make a virtual increase in 

the supercritical strain of a region to with a boundary F can be represented by the equation 

f 1 ~A = (a~ ~ - ~ ~s ,~ .&. , . )6u~ns  dr ,  

F 

(4.1) 

where the ~ are stresses up to the variation in the strains. After we take the Gauss-Ostrogradskii transform of (4.1), we have 
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1 
~A = (ao  _ 2 V/~/,,~,,&,n,~)&i. i al2. 

12o 

~y comparing this equation with the formula for the strain energy 

= [ ( , , o  _ 1_ an ,  #E 
2 

rio 

r includes the tangential modulus tensor D at the supercritical stage of material strain: 

& r  = - D  : de ,  

ve obtain that the stable state corresponds to the condition 

6E - ~A = ~ (Viir, m - Dij,,,,,)6e,,,,,6eii dft  > O. 

f lo  

If  we go to the elementary volume df~ and introduce a comparative loading rigidity tensor S: 

S i j r n n  = ] /~jrnn - -  D i j ra ,  n ,  (4.2) 

~aen the stability criterion for the supercritical strain of an elementary material particle in a body of f'mite dimensions will be 

~quivalent to the requirement that the square of the tensor 

Sij,,,n~c,~,,~ifEij > 0 (4.3) 

be positive. 
We now find the rigidity tensor of the loading system. We write the equation for the work of external forces in the 

form 

10crlj ~uk)~uinj  dF. CA=f( ~r~ 2 0uk 
I" 

By comparing (4.4) and (4.1) it follows that the components of the desired tensor can be found from the formula 

u k 

(4.4) 

(4.5) 

As we see, the rigidity of the loading system depends on the relationship between the internal forces and displacements. 

Naturally, this is because the displacement of any point of the deformable body is determined by the strain of all its material 

particles, as well as the displacement of the boundaries, and in this sense it is an integral quantity that characterizes the rigidity 

of the loading system. 
The relationship between the internal forces and displacements reflects the rigidity characteristics of all the material 

particles and elements of the loading system as a whole. Accordingly, the concept of an equivalent rigidity of the loading 

system has been introduced [4], which relates how a particular point is displaced in the direction of a principal stress acting 
on an elementary area. The supercritical strain condition of a small but finite region follows from Eqs. (4.2), (4.3), and (4.5) 

[4]. However only if these equations are written with respect to the principal axes can the partial derivatives in (4.5) be 
replaced by a ratio of absolute quantities and can dx be replaced by Ax such that each component of the S tensor is positive 

[this condition is sufficient but not necessary to fulfill (4.3)]. 
5. Boundary-Value Problem. By using the above approach, a boundary-value problem can be used to described the 

whole process of a quasistatic load deforming a body and causing it to fail, including the accompanying appearance and 
development of 1) damage zones, 2) material failure zones, and 3) regions of supercritical strain whose behavior is reflected 

on as a descending section on the stress-strain diagram. The boundary-value problem consists of a closed system of equations 
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= 0 ,  e , # ( t )  = - 

, n A t )  = Cijk [Zk ,,,. - - 

nkz,   = ekt, . = Ck,  s ) ,  

along with the critical strain conditions (3.2), the stability condition of the critical strain (4.3), and the boundary conditions 

(2.1) and (2.2). 

This formulation of the boundary-value problem of the continuum mechanics of failure is based on formulations of the 

boundary-value problem in the theories of elasticity and plasticity, but its main feature is that the defining equations include 

1) the possibility of a descending section on the stress-strain diagram and 2) the use of stability criteria for supercritical strain 

processes. Naturally, the actual form of the equations can differ from those shown here. 

As an illustration, we now examine the solution of the boundary-value problem for the supercritical strain of a thick- 

walled cylinder, which is loaded by an internal pressure. It is assumed that the stress-strain diagram of the material allows 

piecewise linear approximation with a shear modulus G in the elastic part and a softening modulus - G  s in the section of 

supercritical strain. The critical stress state is reached when the absolute value of the stresses % reaches a limiting value Crab. 

In order to include the rigidity H = 2K/a of the loading system, which in this case includes the pressurizing device and the 

working liquid or gas, we use the boundary conditions shown in Table 1. An analytical solution of this problem is shown in 

Fig. 3 for the following data: p = 326 MPa, a = 10 mm, b = 20 mm, Crab = 500 MPa, G = 2-104 MPa, v = 0.3, G s = 104 

MPa, and H = 0. 

The calculations show tht the stable failure stage, when the absolute stress on the inner wall exceeds the yield stress, 

starts at a pressure.of 216 MPa. The stable supercritical strain, which corresponds to "motion" along the descending part of 

the stress-strain diagram of points that reflect the stress-strain state of material particles on the edges of a zone with 

weakened bonds, continues as long as the outer radius of this zone does not exceed c* = 15 mm and the pressure does not 

exceed 326 MPa. As we see, the reserve load capacity, observed with a refined calculation that includes the whole stress-strain 

diagram, is 51% in this case. 
The nonzero rigidity of the loading system allows the failure process to be stabilized and increases the limiting 

dimension of the weakened zone (c* - a). A graph of this function is shown in Fig. 4. The value of the parameter H calculated 
on the basis of [18] is 2"107 N/m 3 for air and 4.5-1011 N/m 3 for water. 

Just as in the analysis of elastic-plastic problems [19], the existence and uniqueness of the solution of the boundary 

problem in this case requires proof. The absence of a solution of the problem in the mathematical sense shows the impossibility 

of equilibrium resistance of a body with externally applied loads; i.e., of macrofailure. 
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